9 research outputs found

    Entropic Compressibility of L\'evy Processes

    Full text link
    In contrast to their seemingly simple and shared structure of independence and stationarity, L\'evy processes exhibit a wide variety of behaviors, from the self-similar Wiener process to piecewise-constant compound Poisson processes. Inspired by the recent paper of Ghourchian, Amini, and Gohari, we characterize their compressibility by studying the entropy of their double discretization (both in time and amplitude) in the regime of vanishing discretization steps. For a L\'evy process with absolutely continuous marginals, this reduces to understanding the asymptotics of the differential entropy of its marginals at small times. We generalize known results for stable processes to the non-stable case, and conceptualize a new compressibility hierarchy of L\'evy processes, captured by their Blumenthal-Getoor index.Comment: 26 pages, 1 figur

    Towards Data Auctions with Externalities

    Full text link
    The design of data markets has gained importance as firms increasingly use predictions from machine learning models to streamline operations, yet need to externally acquire training data to fit such models. One aspect that has received limited consideration is the externality a firm faces when data is allocated to competing firms. Such externalities couple firms' optimal allocations, despite the inherent free replicability of data. In this paper, we demonstrate that the presence of externalities increases the optimal revenue of a monopolistic data seller by letting firms pay to prevent allocations to other competing firms. This is shown by first reducing the combinatorial problem of allocating and pricing multiple datasets to the auction of a single digital good. We achieve this by modeling utility for data solely through the increase in prediction accuracy it provides. Then, we find the welfare and revenue maximizing mechanisms, highlighting how the forms of firms' private information - whether they know the externalities they exert on others or vice-versa - affects their overall structures. In all cases, the optimal allocation rule is a single threshold (one per firm), where either all data is allocated or none is

    How to Subvert Backdoored Encryption: Security Against Adversaries that Decrypt All Ciphertexts

    Get PDF
    In this work, we examine the feasibility of secure and undetectable point-to-point communication when an adversary (e.g., a government) can read all encrypted communications of surveillance targets. We consider a model where the only permitted method of communication is via a government-mandated encryption scheme, instantiated with government-mandated keys. Parties cannot simply encrypt ciphertexts of some other encryption scheme, because citizens caught trying to communicate outside the government\u27s knowledge (e.g., by encrypting strings which do not appear to be natural language plaintexts) will be arrested. The one guarantee we suppose is that the government mandates an encryption scheme which is semantically secure against outsiders: a perhaps reasonable supposition when a government might consider it advantageous to secure its people\u27s communication against foreign entities. But then, what good is semantic security against an adversary that holds all the keys and has the power to decrypt? We show that even in the pessimistic scenario described, citizens can communicate securely and undetectably. In our terminology, this translates to a positive statement: all semantically secure encryption schemes support subliminal communication. Informally, this means that there is a two-party protocol between Alice and Bob where the parties exchange ciphertexts of what appears to be a normal conversation even to someone who knows the secret keys and thus can read the corresponding plaintexts. And yet, at the end of the protocol, Alice will have transmitted her secret message to Bob. Our security definition requires that the adversary not be able to tell whether Alice and Bob are just having a normal conversation using the mandated encryption scheme, or they are using the mandated encryption scheme for subliminal communication. Our topics may be thought to fall broadly within the realm of steganography. However, we deal with the non-standard setting of an adversarially chosen distribution of cover objects (i.e., a stronger-than-usual adversary), and we take advantage of the fact that our cover objects are ciphertexts of a semantically secure encryption scheme to bypass impossibility results which we show for broader classes of steganographic schemes. We give several constructions of subliminal communication schemes under the assumption that key exchange protocols with pseudorandom messages exist (such as Diffie-Hellman, which in fact has truly random messages)

    Data Structures Meet Cryptography: 3SUM with Preprocessing

    Full text link
    This paper shows several connections between data structure problems and cryptography against preprocessing attacks. Our results span data structure upper bounds, cryptographic applications, and data structure lower bounds, as summarized next. First, we apply Fiat--Naor inversion, a technique with cryptographic origins, to obtain a data structure upper bound. In particular, our technique yields a suite of algorithms with space SS and (online) time TT for a preprocessing version of the NN-input 3SUM problem where S3⋅T=O~(N6)S^3\cdot T = \widetilde{O}(N^6). This disproves a strong conjecture (Goldstein et al., WADS 2017) that there is no data structure that solves this problem for S=N2−δS=N^{2-\delta} and T=N1−δT = N^{1-\delta} for any constant δ>0\delta>0. Secondly, we show equivalence between lower bounds for a broad class of (static) data structure problems and one-way functions in the random oracle model that resist a very strong form of preprocessing attack. Concretely, given a random function F:[N]→[N]F: [N] \to [N] (accessed as an oracle) we show how to compile it into a function GF:[N2]→[N2]G^F: [N^2] \to [N^2] which resists SS-bit preprocessing attacks that run in query time TT where ST=O(N2−ε)ST=O(N^{2-\varepsilon}) (assuming a corresponding data structure lower bound on 3SUM). In contrast, a classical result of Hellman tells us that FF itself can be more easily inverted, say with N2/3N^{2/3}-bit preprocessing in N2/3N^{2/3} time. We also show that much stronger lower bounds follow from the hardness of kSUM. Our results can be equivalently interpreted as security against adversaries that are very non-uniform, or have large auxiliary input, or as security in the face of a powerfully backdoored random oracle. Thirdly, we give non-adaptive lower bounds for 3SUM and a range of geometric problems which match the best known lower bounds for static data structure problems

    Budget-Feasible Mechanism Design for Non-Monotone Submodular Objectives: Offline and Online

    Get PDF
    The framework of budget-feasible mechanism design studies procurement auctions where the auctioneer (buyer) aims to maximize his valuation function subject to a hard budget constraint. We study the problem of designing truthful mechanisms that have good approximation guarantees and never pay the participating agents (sellers) more than the budget. We focus on the case of general (non-monotone) submodular valuation functions and derive the first truthful, budget-feasible and O(1)O(1)-approximate mechanisms that run in polynomial time in the value query model, for both offline and online auctions. Prior to our work, the only O(1)O(1)-approximation mechanism known for non-monotone submodular objectives required an exponential number of value queries. At the heart of our approach lies a novel greedy algorithm for non-monotone submodular maximization under a knapsack constraint. Our algorithm builds two candidate solutions simultaneously (to achieve a good approximation), yet ensures that agents cannot jump from one solution to the other (to implicitly enforce truthfulness). Ours is the first mechanism for the problem where---crucially---the agents are not ordered with respect to their marginal value per cost. This allows us to appropriately adapt these ideas to the online setting as well. To further illustrate the applicability of our approach, we also consider the case where additional feasibility constraints are present. We obtain O(p)O(p)-approximation mechanisms for both monotone and non-monotone submodular objectives, when the feasible solutions are independent sets of a pp-system. With the exception of additive valuation functions, no mechanisms were known for this setting prior to our work. Finally, we provide lower bounds suggesting that, when one cares about non-trivial approximation guarantees in polynomial time, our results are asymptotically best possible.Comment: Accepted to EC 201

    Budget-feasible mechanism design for non-monotone submodular objectives: Offline and online

    Get PDF
    The framework of budget-feasible mechanism design studies procurement auctions where the auctioneer (buyer) aims to maximize his valuation function subject to a hard budget constraint. We study the problem of designing truthful mechanisms that have good approximation guarantees and never pay the participating agents (sellers) more than the budget. We focus on the case of general (non-monotone) submodular valuation functions and derive the first truthful, budget-feasible and O(1)-approximation mechanisms that run in polynomial time in the value query model, for both offline and online auctions. Since the introduction of the problem by Singer [40], obtaining efficient mechanisms for objectives that go beyond the class of monotone submodular functions has been elusive. Prior to our work, the only O(1)-approximation mechanism known for non-monotone submodular objectives required an exponential number of value queries. At the heart of our approach lies a novel greedy algorithm for non-monotone submodular maximization under a knapsack constraint. Our algorithm builds two candidate solutions simultaneously (to achieve a good approximation), yet ensures that agents cannot jump from one solution to the other (to implicitly enforce truthfulness). Ours is the first mechanism for the problem where-crucially-the agents are not ordered according to their marginal value per cost. This allows us to appropriately adapt these ideas to the online setting as well. To further illustrate the applicability of our approach, we also consider the case where additional feasibility constraints are present, e.g., at most k agents can be selected. We obtain O(p)-approximation mechanisms for both monotone and non-monotone submodular objectives, when the feasible solutions are independent sets of a p-system. With the exception of additive valuation functions, no mechanisms were known for this setting prior to our work. Finally, we provide lower bounds suggesting that, when one cares about non-trivial approximation guaran

    Maximization of Approximately Submodular Functions

    No full text
    We study the problem of maximizing a function that is approximately submodular under a cardinality constraint. Approximate submodularity implicitly appears in a wide range of applications as in many cases errors in evaluation of a submodular function break submodularity. Say that F is ε-approximately submodular if there exists a submodular function f such that (1−ε)f (S) ≤ F (S) ≤ (1+ε)f (S) for all subsets S. We are interested in characterizing the query-complexity of maximizing F subject to a cardinality constraint k as a function of the error level ε > 0. We provide both lower and upper bounds: for ε > n −1/2 we show an exponential query-complexity lower bound. In contrast, when ε < 1/k or under a stronger bounded curvature assumption, we give constant approximation algorithms

    How to subvert backdoored encryption: Security against adversaries that decrypt all ciphertexts

    No full text
    © Thibaut Horel, Sunoo Park, Silas Richelson, and Vinod Vaikuntanathan. In this work, we examine the feasibility of secure and undetectable point-to-point communication when an adversary (e.g., a government) can read all encrypted communications of surveillance targets. We consider a model where the only permitted method of communication is via a government-mandated encryption scheme, instantiated with government-mandated keys. Parties cannot simply encrypt ciphertexts of some other encryption scheme, because citizens caught trying to communicate outside the government’s knowledge (e.g., by encrypting strings which do not appear to be natural language plaintexts) will be arrested. The one guarantee we suppose is that the government mandates an encryption scheme which is semantically secure against outsiders: a perhaps reasonable supposition when a government might consider it advantageous to secure its people’s communication against foreign entities. But then, what good is semantic security against an adversary that holds all the keys and has the power to decrypt? We show that even in the pessimistic scenario described, citizens can communicate securely and undetectably. In our terminology, this translates to a positive statement: all semantically secure encryption schemes support subliminal communication. Informally, this means that there is a two-party protocol between Alice and Bob where the parties exchange ciphertexts of what appears to be a normal conversation even to someone who knows the secret keys and thus can read the corresponding plaintexts. And yet, at the end of the protocol, Alice will have transmitted her secret message to Bob. Our security definition requires that the adversary not be able to tell whether Alice and Bob are just having a normal conversation using the mandated encryption scheme, or they are using the mandated encryption scheme for subliminal communication. Our topics may be thought to fall broadly within the realm of steganography. However, we deal with the non-standard setting of an adversarially chosen distribution of cover objects (i.e., a stronger-than-usual adversary), and we take advantage of the fact that our cover objects are ciphertexts of a semantically secure encryption scheme to bypass impossibility results which we show for broader classes of steganographic schemes. We give several constructions of subliminal communication schemes under the assumption that key exchange protocols with pseudorandom messages exist (such as Diffie-Hellman, which in fact has truly random messages)
    corecore